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Abstract
The utilisation of magnetic resonance imaging (MRI) images for the automated detection of Alzheimer’s disease has garnered
significant attention in recent years. This interest stems from the progressmade inmachine learning techniques and the possible
application of such methods in the field of diagnostics. This study aims to evaluate the performance of 16 histogram-based
image texture descriptors and features extracted from 18 pre-trained convolutional neural networks in characterising brain
patterns observed in 2D slices of MRI images. The primary objective is to determine the most effective feature types for this
task. The characteristics were taken from the magnetic resonance imaging (MRI) dataset given by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The study involved the calculation of features on 2D axial, coronal, and sagittal slices,
followedby classification usingfive binarymachine learning algorithms. The objectivewas to differentiate between individuals
with normal cognitive function and those diagnosed with Alzheimer’s disease. The proposed methodology additionally
facilitated the identification of specific brain areas to be selected for each axis, in order to achieve optimal accuracy. This
involved determining the matching feature and classifier combinations.
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1 Introduction

The study of diseases related to cognitive decline is particu-
larly important as there are over 50million people worldwide
livingwith dementia in 2020, and it is predicted that this num-
ber will almost double every 20 years, reaching 82 million in
2030 [1]. Dementia is a general term for a decline in mental
ability severe enough to interfere with daily life. It can be a
chronic or persistent disorder of the mental processes caused
by brain disease or injury and marked by memory disorders,
personality changes, and impaired reasoning. Alzheimer’s,
which is themost common cause of dementia, accounting for
60-80% of dementia cases, is a type of dementia that causes
problems with decline in memory, reasoning, and behaviour.
As there is no cure forAlzheimer’s disease,modernmedicine
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is focused on the prevention of early-onset Alzheimer’s and
symptom management [2–5]. While differentiating between
healthy patients and patients with Alzheimer’s disease is use-
ful for gathering knowledge about the disease and tailoring
the individual’s medical treatment, from the patient’s per-
spective, it may already be too late. The first onset of mild
cognitive impairment (MCI) and later stages of cognitive
decline are diagnosed using various psychological tests, such
as the famous clock test [6] or other methods such as phys-
ical exams, neurological exams, mental status tests, mood
assessments, genetic testing, and brain imaging.

The first indications of progressing Alzheimer’s can
express themselves as MCI, which can last from 2 to 7 years,
according to the Global Deterioration Scale. By diagnosing
MCI in a timelymanner, the patient can start preventive mea-
sures and delay the onset of later stages of cognitive decline.
Lately, deep learning is being used in brain imaging such
as magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) scans to detect Alzheimer’s and even
MCI, where the ultimate goal is to predict the risk of devel-
opingMCI and Alzheimer’s years before they develop. Until
the wide acceptance of deep learning, various visual descrip-
tors were used to classify MRI images. These descriptors
were based on image texture descriptors used in computer
vision and modified for MRI images. Using this approach,
researchers are trying to invent visual descriptors that would
outperform their predecessors.

Nowadays, due to advances in computing power, neural
networks offer state-of-the-art classification capabilities for
image processing tasks [7–10]. This shift in technology sug-
gests that the time and effort spent on handcrafting visual
descriptors might be over. For example, a neural network
can be trained from scratch with enough input data; an easier
approach is to use pre-trained neural networks, referred to as
transfer learning, where the weights of the network are ini-
tialised based on networks that have been trained on millions
of images and the end of the network is changed according
to the problem at hand. Similarly, the feature extraction part
of a neural network can be combined with a classifier, such
as a support vector machine (SVM).

The main contribution of this study is the exploration
of different histogram-based features and features extracted
from pre-trained CNNs used on brain MRI data and their
usefulness for diagnosis ascertained through an exhaustive
search among different MRI slice, feature, and classifier
combinations. The proposed framework is based on feature
preparation for the classification of cognitively normal (CN)
and Alzheimer’s disease (AD) patients from the selection of
2D slices of the MRI scans.

2 Features for image classification

2.1 Histogram-based local descriptors

Local descriptors based on histograms [11–13] have been
shown to be effective tools for feature extraction and image
analysis. With the ability to identify regional patterns and
spatial information, these descriptors provide a condensed
representation of image features. Histogram-based local
descriptors for MRI help with image segmentation, regis-
tration, and classification tasks by offering insights into local
intensity variations and textural patterns.

Histogram-based local descriptors examine how voxel
intensities are distributed locally within an MRI image.
They characterise the statistical characteristics of the inten-
sities and are often estimated within local neighbourhoods or
regions of interest (ROIs). Important characteristics include
intensity changes, texture patterns, and spatial interactions
between adjacent voxels.

Histogram-based local descriptors offer several benefits,
which can be summarised below:

– They are insensitive to global image transformations such
as translation, rotation, and scaling, making them resis-
tant to variations in viewpoint.

– They are computationally efficient because histograms
can be independently and concurrently computed.

– The histograms are adaptable to varying illumination
conditions, which increases their resilience.

– Histogram-based descriptors are appropriate for large-
scale image databases because they are compact and
easily stored.

Notably, the most widely used histogram-based local
descriptors in medical imaging are local binary pattern
(LBP), histogram of gradients (HOG), and local phase quan-
tization (LPQ). To expand on this topic, the potential use
of 16 histogram-based local descriptors (as shown in Table
1) is examined and their performance is evaluated in brain
MRI classification. The credit for method implementation
in MATLAB goes to Turan and Lam [12], who investigated
local descriptor performance for facial expression recogni-
tion.

2.2 Pre-trained convolutional neural networks

Pre-trained convolutional neural networks (CNNs) are potent
computer vision tools that have been trained to extract mean-
ingful features from images using large datasets such as
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Table 1 Histogram-based local
descriptors

Nr. Abbrev. Descriptor Name Dim.

1 LBP [14] Local Binary (Bin.) Pattern 59

2 HOG [15] Hist. of Oriented Gradients 6084

3 PHOG [16] Pyramid of Hist. of Oriented Gradients 168

4 LPQ [17–19] Local Phase Quantization 256

5 LMP [20] Local Monotonic Pat. 256

6 LTrP [21, 22] Local Transitional Pat. 256

7 MBC [23, 24] Monogenic Bin. Coding 3072

8 LGIP [25] Local Gradient Increasing Pat. 37

9 LDN [26] Local Directional Number Pat. 56

10 GDP [27–29] Gradient Directional Pat. 256

11 WLD [30, 31] Weber Local Descriptor 32

12 LAP [32] Local Arc Pattern 272

13 LGP [33] Local Gradient Pattern 7

14 MBP [34] Median Bin. Pattern 256

15 LDTP [35] Local Directional Texture Pat. 72

16 IWBC [36] Improved Weber Bin. Coding 2048

Table 2 Pre-trained
convolutional neural networks

Nr. Network Depth Par. (Mil.) Dim.

1 AlexNet [41] 8 62.3 4096

2 VGG16 [42] 16 138 4096

3 VGG19 [42] 19 144 4096

4 GoogLeNet [43] 22 7.0 1024

5 Inception-v3 [44] 48 23.9 2048

6 ResNet18 [45] 18 11.7 512

7 ResNet50 [45] 50 25.6 2048

8 ResNet101 [45] 101 44.6 2048

9 SqueezeNet [46] 18 1.24 1000

10 InceptionResNetV2 [47] 164 55.9 1536

11 Xception [48] 71 22.9 2048

12 DarkNet19 [49] 19 20.8 1000

13 DarkNet53 [49] 53 41.6 1024

14 ShuffleNet [50] 50 1.4 544

15 NASNet Mobile [51] – 5.3 1056

16 NASNet Large [51] – 88.9 4032

17 MobileNet-v2 [52] 53 3.5 1280

18 EfficientNet [53] 82 5.3 1280

ImageNet [37–39]. These networks have learned to recog-
nise and categorise objects in a variety of categories, making
them useful for solving a vast array of problems. By lever-
aging the knowledge and representations learned by these
pre-trained networks, they can be used as a starting point
for new image classification or recognition tasks using the
transfer learning technique.

The central idea behind using pre-trained CNNs is that
they can autonomously learn hierarchical image representa-
tions [40]. Earlier network layers capture low-level features

such as edges and textures, while later layers derive more
complex and abstract features such as shapes and objects.
These learned features can then be used to depict images in
a compact and discriminatory manner, allowing for efficient
feature extraction and classification.

The use of pre-trained networks and transfer learning is
especially important in medical imaging due to the scarcity
of data. This study demonstrates how feature extraction using
pre-trained networks can be used to classify brainMRI slices
and potentially eliminate the need for handcrafted feature
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descriptors. The list of tested neural networkmodels is shown
in Table 2, and the models were implemented in MATLAB
using MathWorks libraries and Deep Learning Toolbox.

3 Related work

Themachine learning algorithms in brain imaging try to learn
from the structural changes of the brain, such as reduced
complexity and decreased size. For example, Nayaki and
Varghese [54] used MRI scans from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database and tested
local patterns of grey matter and classified them using SVM.
The task of local patterns was to encode the loss of grey mat-
ter volume for MCI and AD when compared to CN. In the
CN, MCI, and AD classifications, an accuracy of 76% was
reached with LBP, and the best result was achieved using
local quinary pattern (LQP) with an accuracy of 81%.

A study by Ben Ahmed et al. [55] also used MRI images
from the ADNI dataset to divide the visual features of the
hippocampi of CN, MCI, and AD patients into three groups.
The experimental results show that the classification for AD
versus NC subjects achieves accuracies of 87% for the ADNI
subset. For MCI, they reached accuracies of 78.22% and
72.23% for MCI versus CN and MCI versus AD, respec-
tively.

Sarwinda and Bustamam [56] proposed to use HOG
features of the three orthogonal planes for the classifica-
tion of AD using MRI images. The feature dimensionality
was reduced using probabilistic principal component anal-
ysis (PPCA), and then random forest (RF) was used as
a binary classifier to classify the features. The HOG-TOP
approach achieved an accuracy of 95.8% for AD/CN, 94.4%
for MCI/CN, and 93.64% for AD/MCI.

Altaf et al. [57] performed Alzheimer’s disease classifica-
tion using images and clinical features based on the ADNI
dataset. From image feature descriptors, they tested the grey
level co-occurrence matrix (GLCM), scale invariant feature
transform (SIFT), HOG, and LBP. In the case of AD vs. CN,
the binary classification results of SVM, ensemble, k-nearest
neighbour (KNN), and decision tree (DT) accuracy were in

the range of 50% to 60%, while other combinations such as
AD/MCI and CN/MCI with GLCM reached 80% accuracy.
Their proposed method reached 86.7% accuracy for CN and
MCI.

Newer developments are often based on various frame-
works and deep learning; for example, Cao et al. [58]
combined 2D and 3D images in a MVMM learning frame-
work, which was evaluated on the ADNI database. Their
proposed model could classify MCI/CN with 87.50% accu-
racy andMCI/ADwith 83.18% accuracy. Similarly, Cohen et
al. [59] used categorical data from the ADNI dataset, which
also includedMRI images, to distinguish between CN,MCI,
and AD with an accuracy of 87.2% using an artificial neural
network (ANN) classifier and an accuracy of 88.3% using a
1D CNN classifier.

Basaia et al. [60] used CNN to predict the diagnosis of AD
andMCI,whichwill convert toAD (c-MCI) based on a single
cross-sectional brain structural MRI scan from the ADNI
andMilan datasets. The learning algorithm could distinguish
AD/CN with 99.2% accuracy and c-MCI/CN with 87.1%
accuracy.

Table 3 presents a comparison between the use of sin-
gle and multi-slice techniques in the categorization of AD,
employing several machine learning algorithms.

4 Dataset

Data used in the preparation of this study were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD).

The files in the ADNI1 dataset are MRI images, repre-
senting the internal structure of a patient’s head in the form
of a 3D grid consisting of elements called voxels. The scans

Table 3 Examples of
state-of-the-art single- and
multi-slice approach in the
literature for CN/AD
classification accuracy

Article Method Single/ multi-slice Acc.

Nayaki & Varghese [54] LQP+SVM Single 81.00

Ben Ahmed et al. [55] CHF-CSF+SVM Single 87.00

Sarwinda et al. [56] PPCA+RF Multi 95.80

Altaf et al. [57] GLCM Single 97.80

Cao et al. [58] MVMM Multi 83.18

Cohen et al. [59] 1D CNN Multi- categorical 88.30

Basaia et al. [60] 3D CNN Multi 99.20
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Fig. 1 MRI slices of the axial, sagittal, and coronal planes [61]

undergo a standardised procedure and are processed using
Gradwarp, B1 non-uniformity, and the N3 algorithm. The
image files are stored in NIfTI format, a type of medical
image format that is used to facilitate and strengthen post-
processing analysis. NIfTI is a file format for neuroimaging
created by a committee based at the National Institutes of
Health.

The images of the patients are classified into three cat-
egories depending on the group to which they belong:
cognitively normal (CN), mild cognitive impairment (MCI),
andAlzheimer’s disease (AD).TheusedADNIdataset subset
consisted of CN and AD patients from first-year record-
ings done with a 1.5T MRI scanner. The dimensions of the
scans had various sizes and ranged from 192 × 192 × 160
to 256 × 256 × 184. To make use of all of the scans,
the MRI scans were resized using cubic interpolation to
224× 224× 224, which was the most common input image
height and width for the selected CNN’s. The 2D images
used in feature extraction of the MRI brain scans were cre-
ated from the axial, sagittal, and coronal planes, as shown in
Fig. 1.

5 Methodology

Using allMRI slices from each of the three orthogonal planes
is possible, but such an approach requires hardware that can
handle long feature vectors. A bare minimum approach is to

use one slice from one of the axes. To find out which axes
are the most suitable, an exhaustive search approach was
used to check all the slices. This approach also gives insight
into which brain areas contain relevant features according to
classification results.

The sides of MRI scans typically do not contain informa-
tion about the brain; therefore, out of the 224, slices 53 to
172, in total 120, were selected for extraction in each axis.
Each slice was normalised according to its minimum and
maximum values and scaled to the [0,255] range to mimic
the 8-bit unsigned integer data format. For the neural net-
works that used different input sizes, the slices were resized
to match the required input dimensions.

The data samples were split according to an 80:20 train–
test split, where each class had 127 patients and each patient
had two recordings. In the ANDI dataset, each patient can
have several MRI recordings. In our tests, the first and last
recordings were selected per patient according to the MRI
scan acquisition date. The data are split according to patient
IDs to ensure correct training and testing data allocation and
avoid the same patient appearing in both sets simultaneously.

After feature extraction, the results were classified into
CN and AD. The chosen classifiers are a typical choice when
creating baseline results and are available in most machine
learning packages and programmes. In this study, the chosen
classifiers are as follows:

– Support vector machine - Linear
– Discriminant analysis - Pseudo-linear
– Discriminant analysis - Pseudo-quadratic
– Decision tree
– K-nearest neighbour, k=9

6 Results and discussion

The focus of this discussion is to show how well different
features used on brainMRI data can be used for diagnosis and
examine if brute-force machine learning model testing can
find useful patterns in the brain MRI data. The analysis will
specifically concentrate on three anatomical planes: axial,
coronal, and sagittal.

This study investigates the effectiveness of various
histogram-based features, including WLD, LAP, LDTP, and
HOG, and pre-trained CNNs such as AlexNet and Dark-
Net53. Our objective is to determine the model-feature
combinations that obtain the highest classification accuracy.
The findings are systematically recorded and analysed to
uncover complex patterns and potential biomarkers that may
function as crucial diagnostic criteria for neurodegenerative
disorders such as AD.

Additionally, the research investigates the performance of
thesemodels on specific slices, identifying the slices that pro-
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vide the highest level of discriminatory capability. The use
of granular analysis is crucial for comprehending the spatial
distribution of disease-specific characteristics within various
brain regions. The results are consistent with prior research,
which attests to the clinical importance and potential appli-
cation of our computational method in the field of medical
imaging and diagnosis.

6.1 Axial plane

When considering axial slices, the top four histogram-based
features are WLD, LAP, LDTP, and HOG. According to
related work, WLD has been used for intracranial haem-
orrhage CT classification [62] and as features for cerebral
microbleed detection [63]. In computer vision, LAP is used
in thefield of facial expression analysis, but there are very few
studies of this feature in medical imaging; for example, one
study used LAP for the detection of tuberculosis using chest
radiographs [64]. LDTP, which should not be confused with
local variations of true phase that use the same acronym, can
be found in brain tumour classification [65], mammographic
breast cancer classification [66] and liver tumour segmenta-
tion [67]. The last of the top four features is HOG, which is a
significantly more popular choice in medical imaging [68].

Themost interesting results come from the individual slice
representation. At slice number 88, you can see the peak from
the histogram descriptors (see Fig. 2), and the pre-trained
networks make a curve that looks like the top of a Gaussian
distribution around a nearby point (see Fig. 3). The axial
view of these slices is slicing through Corpus Callosum or
slightly above it. Different patterns of cortical atrophy help to
tell the difference between dementias like AD. For example,

Fig. 2 Axial plane: Slice histogram for histogram descriptors. Slices
are ordered from top to bottom of the patient’s head

themean surface area of the corpus callosum is much smaller
in Alzheimer’s patients than in healthy controls [69].

Table 4 primarily examines the axial plane and utilises
a range of histogram-based features for the classification of
CN/AD. According to the data presented in the table, it can
be observed that the integration of the WLD feature with
SVM and LDA classifiers yields the highest accuracy rate of
72.22%. This finding implies that the WLD feature exhibits
strong resilience in accurately classifying individuals with
normal cognition and Alzheimer’s disease in the axial plane.

Fig. 3 Axial plane: Slice histogram for pre-trainedCNNfeatures. Slices
are ordered from top to bottom of the patient’s head

Table 4 Best axial CN/AD classification results using histogram
descriptors

Features SVM LDA QDA DT KNN

GDP 62.04 64.81 62.04 62.96 58.33

HOG 70.37 68.52 50.93 62.96 62.04

IWBC 68.52 65.74 50.00 64.81 61.11

LAP 70.37 69.44 60.19 64.81 64.81

LBP 62.96 62.96 59.26 61.11 64.81

LDN 67.59 68.52 62.96 67.59 65.74

LDTP 64.81 62.04 62.96 60.19 64.81

LGIP 66.67 60.19 64.81 62.04 62.04

LGP 63.89 63.89 62.96 66.67 60.19

LMP 62.96 63.89 59.26 66.67 62.04

LPQ 66.67 67.59 61.11 66.67 62.04

LTrP 62.96 64.81 62.96 66.67 66.67

MBC 69.44 62.04 50.00 61.11 60.19

MBP 62.96 61.11 59.26 62.96 63.89

PHOG 67.59 62.04 67.59 65.74 61.11

WLD 72.22 69.44 66.67 65.74 62.96

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)
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Table 5 Best axial CN/AD classification accuracy results using pre-
trained CNN’s

Features SVM LDA QDA DT KNN

alexnet 74.07 70.37 62.96 72.22 67.59

darknet19 69.44 64.81 62.04 62.96 61.11

darknet53 73.15 72.22 58.33 68.52 64.81

efficientnet 63.89 60.19 60.19 63.89 60.19

googlenet 69.44 64.81 60.19 69.44 66.67

inc.resnet-v2 67.59 66.67 57.41 62.96 62.96

inception-v3 69.44 68.52 58.33 64.81 64.81

mobilenet-v2 66.67 68.52 59.26 68.52 67.59

nasnetlarge 68.52 68.52 55.56 63.89 62.96

nasnetmobile 69.44 65.74 62.04 65.74 64.81

resnet101 68.52 68.52 59.26 61.11 65.74

resnet18 67.59 62.04 62.96 62.04 60.19

resnet50 67.59 65.74 59.26 63.89 60.19

shufflenet 67.59 65.74 58.33 66.67 69.44

squeezenet 71.30 71.30 59.26 67.59 69.44

vgg16 65.74 65.74 62.04 62.04 65.74

vgg19 71.30 66.67 59.26 63.89 66.67

xception 69.44 68.52 55.56 62.04 60.19

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)

The superior performance of the WLD can be attributed to
its capacity to effectively capture intricate patterns present in
MRI data.

Table 5 primarily centres around the axial plane, with fea-
ture extraction being conducted through the utilisation of
pretrained CNNs. The combination of Alexnet and SVM has
been found to achieve the highest accuracy rate of 74.07%.
This observation suggests that pretrained CNNs, such as
Alexnet, demonstrate a high level of efficacy in extracting
pertinent features from MRI data, specifically in the axial
plane. The modestly superior accuracy observed in CNNs,
as compared to histogram descriptors, indicates that CNNs
may possess a greater capacity for generalising features in
the context of CN/AD classification within this domain.

6.2 Coronal plane

Table 6 directs attention towards the coronal plane and
once more utilises histogram descriptors for the purpose
of classification. The WLD feature demonstrates excep-
tional performance, achieving an accuracy of 79.63% when
utilised in conjunction with SVM and LDA classifiers. The
aforementioned high level of accuracy suggests that WLD
demonstrates effectiveness not only in the axial plane but also
exhibits exceptional performance in the coronal plane. The
versatility of this feature in accommodating various planes
renders it a suitable option for CN/AD classification.

Table 6 Best coronal CN/AD classification accuracy results using his-
togram descriptors

Features SVM LDA QDA DT KNN

GDP 62.04 65.74 62.04 62.96 64.81

HOG 63.89 68.52 50.00 62.96 53.70

IWBC 64.81 71.30 50.00 65.74 62.96

LAP 69.44 63.89 66.67 71.30 68.52

LBP 64.81 65.74 60.19 61.11 64.81

LDN 66.67 69.44 65.74 64.81 59.26

LDTP 63.89 65.74 65.74 70.37 60.19

LGIP 70.37 73.15 64.81 63.89 62.04

LGP 73.15 75.93 71.30 65.74 65.74

LMP 64.81 62.96 61.11 64.81 62.04

LPQ 69.44 65.74 64.81 62.96 62.04

LTrP 62.96 62.04 59.26 62.04 66.67

MBC 74.07 70.37 53.70 63.89 57.41

MBP 67.59 65.74 60.19 65.74 65.74

PHOG 69.44 66.67 64.81 65.74 63.89

WLD 79.63 79.63 68.52 66.67 68.52

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)

Table 7 Best coronal CN/AD classification accuracy results using pre-
trained cnn’s

Features SVM LDA QDA DT KNN

alexnet 75.93 73.15 59.26 73.15 65.74

darknet19 70.37 69.44 60.19 63.89 64.81

darknet53 73.15 69.44 60.19 64.81 65.74

efficientnet 65.74 62.04 58.33 67.59 64.81

googlenet 66.67 64.81 65.74 69.44 68.52

inc.resnet-v2 68.52 71.30 65.74 62.04 62.04

inception-v3 74.07 71.30 56.48 68.52 63.89

mobilenet-v2 68.52 69.44 61.11 67.59 63.89

nasnetlarge 71.30 69.44 60.19 67.59 67.59

nasnetmobile 71.30 64.81 59.26 63.89 64.81

resnet101 71.30 70.37 62.04 64.81 61.11

resnet18 75.00 63.89 61.11 64.81 63.89

resnet50 75.93 71.30 60.19 65.74 62.96

shufflenet 69.44 72.22 62.04 67.59 66.67

squeezenet 71.30 69.44 59.26 66.67 62.96

vgg16 70.37 65.74 57.41 64.81 62.96

vgg19 72.22 64.81 61.11 67.59 64.81

xception 71.30 68.52 62.96 67.59 66.67

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)

123



2716 Signal, Image and Video Processing (2024) 18:2709–2721

Table 7 primarily centres its attention on the coronal plane,
employingpretrainedCNNs for the purpose of feature extrac-
tion. The SVM algorithm in conjunction with the AlexNet
andResNet50models yields a performanceof 75.93%,which
is the highest level of accuracy. AlexNet has been used
in MRI-based cancer classification [70], brain tumour seg-
mentation [71] and Alzheimer’s risk level detection [72], to
mention a few. Although the performance is praiseworthy, it
falls slightly below the level attained through the use of his-
togram descriptors. This observation suggests that although
CNNs demonstrate effectiveness, they may not possess the
same level of adaptability as histogram descriptors such as
WLD in the coronal plane.

Fig. 4 Coronal plane: Slice histogram for histogram descriptors. Slices
are ordered from the front to the back of the patient’s head

Fig. 5 Coronal plane: Slice histogram for pre-trained CNN features.
Slices are ordered from the front to the back of the patient’s head

When comparing coronal plane slices with the highest
model count among the top 10% of the models, both feature
variations provide different answers. According to histogram
descriptors (Fig. 4), the best slices for classification in the
coronal plane are slices numbers 62 and 87, which corre-
spond to the frontal lobe region, and pre-trained CNNs (Fig.
5) offer slice locations at numbers 77 and 101 as the best
option for classification,where the frontal and temporal lobes
are visible. For example, frontotemporal lobar degeneration
(FTLD) and AD are the two most common forms of neu-
rodegenerative dementia [73]. As AD progresses, damage to
the frontal lobes may cause a person to have trouble making
decisions, planning, or organising [74]. Another peak value
at slice number 125 in Fig. 4 according to histogram descrip-
tors can be associated with damage in the right parietal lobe,
which causes trouble judging distances in three dimensions,
for example, in stairway navigation.

6.3 Sagittal plane

The analysis presented in Table 8 examines the sagittal plane
and employs histogram descriptors as a means of classifica-
tion. The combination of theHOGandSVMalgorithmyields
the highest accuracy rate of 77.78%.This observation implies
a change in the predominant influential characteristic when
transitioning from axial and coronal planes to sagittal planes.
The superior performance exhibited by theHOGmethodmay
be attributed to its capacity to effectively capture edge and

Table 8 Best sagittal CN/AD classification accuracy results using his-
togram descriptors

Features SVM LDA QDA DT KNN

GDP 62.04 62.96 62.04 59.26 61.11

HOG 77.78 68.52 50.00 63.89 58.33

IWBC 70.37 66.67 50.00 65.74 61.11

LAP 61.11 61.11 61.11 73.15 64.81

LBP 66.67 64.81 62.04 67.59 64.81

LDN 63.89 66.67 60.19 63.89 67.59

LDTP 66.67 64.81 65.74 65.74 61.11

LGIP 66.67 66.67 59.26 72.22 62.96

LGP 70.37 75.00 65.74 64.81 65.74

LMP 62.04 62.96 62.96 63.89 64.81

LPQ 63.89 64.81 60.19 64.81 62.96

LTrP 63.89 63.89 59.26 62.04 63.89

MBC 67.59 62.04 50.00 60.19 63.89

MBP 65.74 64.81 62.04 62.96 64.81

PHOG 68.52 68.52 62.96 64.81 61.11

WLD 69.44 69.44 60.19 64.81 62.96

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)
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Table 9 Best sagittal CN/AD classification accuracy results using pre-
trained cnn’s

Features SVM LDA QDA DT KNN

alexnet 72.22 66.67 60.19 65.74 65.74

darknet19 70.37 68.52 59.26 65.74 62.04

darknet53 71.30 68.52 55.56 70.37 71.30

efficientnet 63.89 64.81 58.33 62.04 62.04

googlenet 69.44 69.44 57.41 69.44 66.67

inc.resnet-v2 67.59 65.74 56.48 65.74 65.74

inception-v3 68.52 68.52 58.33 64.81 64.81

mobilenet-v2 75.00 62.04 62.96 62.96 68.52

nasnetlarge 73.15 68.52 57.41 66.67 68.52

nasnetmobile 73.15 65.74 62.04 62.04 65.74

resnet101 75.00 67.59 63.89 62.04 63.89

resnet18 66.67 63.89 60.19 62.96 59.26

resnet50 70.37 63.89 57.41 66.67 65.74

shufflenet 70.37 63.89 55.56 66.67 62.04

squeezenet 75.93 63.89 58.33 68.52 66.67

vgg16 68.52 69.44 59.26 65.74 66.67

vgg19 70.37 64.81 60.19 63.89 60.19

xception 69.44 66.67 61.11 64.81 62.96

Bolded numbers show the best results among tested feature extractors
for a specific classifier (Best results in within a column)

texture information, both ofwhich play a crucial role in slices
from the sagittal plane.

The primary emphasis in Table 9 is directed towards
the sagittal plane, with the utilisation of pretrained CNNs
for the purpose of feature extraction. The combination of
SqueezeNet and SVM yields the highest accuracy rate of
75.93% and the next best result was achieved by DarkNet53
and KNN with 71.30% accuracy. Although the performance
exhibits strength, it is marginally inferior to the results
obtained through the utilisation of the HOG feature. This
implies that the effectiveness of feature extraction from pre-
trained CNNs can be subject to variation across different
planes, and they may not consistently surpass the perfor-
mance of traditional histogram descriptors.

The histogram features (Fig. 6) and the pre-trained CNN
features (Fig. 7) taken from the sagittal plane show that the
sagittal cross section of the temporal lobes can be used as
a perspective option for classifying AD. According to the
research by Roe et al. [75], cortical asymmetry indicates that
the two halves of the brain deteriorate at different rates. They
discovered that the left side of the brain shrinks more quickly
in AD in the exact same brain regions as in normal ageing.

Among classifiers, the SVM consistently demonstrates its
efficacy as a powerful classifier across all tables, thereby
highlighting its resilience in effectively handling diverse fea-
ture sets and planes. In terms of characteristics, WLD and
HOG demonstrate exceptional performance as histogram

Fig. 6 Sagittal plane: Slice histogram for histogram descriptors. Peak
locations are at slice Nr. 91 and 136. Slices are ordered from the left to
the right of the patient’s head

Fig. 7 Sagittal plane: Slice histogram for pre-trained CNN features.
Peak locations are at slice Nr. 88 and 139. Slices are ordered from the
left to the right of the patient’s head

descriptors, whereas pretrained CNNs such as Alexnet and
Resnet50 frequently exhibit notable accuracy levels. Despite
this, the effectiveness of thesemethods varies across different
domains. These results may suggest that a combined strategy
using both types of features could produce better results for
classifying CN and AD.

Table 10 shows comparisons of several CN/AD classifica-
tion approaches. It can be seen that single-slice classification
is comparable with other methods; on the other hand, feature
extraction from multiple slices shows better results. With-
out introducing MRI scan alignment procedures, pre-trained
neural networks perform similarly to histogram-based fea-
tures; therefore, given the availability of data, it would be
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Table 10 Method comparison for CN/AD classification using ADNI MRI dataset

Article Slice Feature Classif. Acc.

Nayaki and Varghese [54] Split: 75-25 Samples: 200 Axial GM SVM 72.00

Axial CLBP ALL SVM 72.00

Axial CLBP SM SVM 74.00

Axial CLBP SH SVM 75.00

Axial ALBP SVM 75.00

Axial LBP SVM 76.00

Axial LTP SVM 78.00

Axial CLBP MH SVM 78.00

Axial LPQ MIO SVM 79.00

Axial LGS SVM 80.00

Axial LQP SVM 81.00

Ahmed et al. [55] Split: LOOCV Samples: 107 Multi CHF SVM 85.05

Multi SIFT SVM 79.44

Multi SURF SVM 81.30

Multi CSF volume SVM 78.50

Multi CHF+CSF SVM 87.00

Sarwinda and Bustamam [56] Split: 10-CV Samples: 270 Multi HOG-TOP RF 95.80

Multi CLBPSM TOP RF 92.53

Multi Hybrid RF 94.70

Top results Split: 80-20 Samples: 254 Axial WLD SVM 72.22

Coronal WLD SVM LDA 79.63

Sagittal HOG SVM 77.78

Axial Alexnet SVM 74.07

Coronal Alexnet RasNet50 SVM 75.93

Sagittal SqueezeNet SVM 75.93

more advantageous to look for pre-trained CNNs based on
medical images or choose to retrain the chosen CNNs.

7 Conclusion

This study’s results indicate the potential use of histogram-
based local descriptors and feature extraction using pre-
trained neural networks for Alzheimer’s classification.
Among the investigated classifiers, which were SVM, LDA,
QDA, DT, and KNN, the best results were achieved using
SVM. The three MRI planes were investigated individually,
and the following feature types classified with support vec-
tor machines are considered the most promising options:
in the axial plane, best results were achieved using WLD
72.22% and AlexNet 74.07%, coronal plane, with WLD
79.63%,AlexNet andRasNet5075.93%, sagittal plane, using
histogram of oriented gradients 77.78% and SqueezeNet
75.93%.

The top classification results also indicated the best loca-
tions for slice selection in each plane, and the found locations
also corresponded to brain regions mentioned in medical

publications in Alzheimer’s studies. The best locations for
selecting 2D slices from MRI images according to the clas-
sification results are as follows: corpus callosum viewed in
the axial plane, frontal lobe viewed in the coronal plane, and
left and right temporal lobes viewed in the sagittal plane. The
future work on this approach will focus on performing slice
selection according to aligned and segmented brain regions
as reference points.
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